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Abstract

Early wildfire detection is of the utmost importance to enable rapid response efforts,
and thus minimize the negative impacts of wildfire spreads. To this end, we present
PYRONEAR9g23 , a web-scraping-based dataset composed of videos of wildfires
from a network of cameras that were enhanced with manual bounding-box-level
annotations. Our dataset was filtered based on a strategy to improve the quality
and diversity of the data, reducing the final data to a set of 10,000 images. We ran
experiments using a state-of-the-art object detection model and found out that the
proposed dataset is challenging and its use in concordance with other public dataset
helps to reach higher results overall. We will make our code and data publicly
available.

1 Introduction and Related Work

Wildfires have become an increasingly prevalent and devastating natural disaster worldwide, causing
loss of life, destruction of property, and significant environmental damage. While wildfires have
always been a part of nature’s cycle, human activities and climate change have exacerbated their
frequency and intensity. As such, there is an urgent need to develop and implement advanced
technologies to prevent wildfires, as well as predicting their behavior.

Given the undeniable link between climate change and the increasing frequency of wildfires, the
urgency of addressing this issue is underlined by projections from the Intergovernmental Panel on
Climate Change (IPCC), which anticipate a continued rise in the occurrence of extreme events like
WildﬁresE] The urgency of responding to this crisis is augmented by its ramifications for sustainable
development, the environment, and social equity.

Early wildfire detection is of paramount importance in mitigating the catastrophic consequences of
these increasingly prevalent natural disasters, driven by climate change-induced warmer temperatures
and drier conditions Reidmiller et al.|[2018]]. Recent advancements in artificial intelligence (AI) and
deep learning (DL) techniques have spurred innovative methodologies for addressing this critical
issue, yielding a profusion of methods and datasets tailored to diverse aspects of early wildfire
detection.
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Fernandes et al.|[2023]] demonstrated the use of EfficientDet for automatic early detection of wildfire
smoke with visible-light cameras, emphasizing the significance of large and representative datasets for
training. Their dataset consists of 14,125 smoke and 21,203 non-smoke images. Their results achieved
a true detection rate of 80.4% and a false-positive rate of 1.13%, outperforming previous studies
focusing on smoke plumes. [Yazdi et al.|[2022] introduced Nemo, an open-source benchmark for
fine-grained wildfire smoke detection, tailored to the early incipient stage. They adapted Facebook’s
DEtection TRansformer (DETR) [Carion et al.| [2020] to wildfire detection, achieving superior
performance in detecting smoke across different object sizes. Their model detected 97.9% of fires
in the incipient stage, outperforming baseline methods. [Dewangan et al.|[2022] propose a model
with an associated dataset: SmokeyNet and Fire Ignition Library (FIgLib). The dataset is publicly
available and composed of 25,000 labeled wildfire smoke images as seen from fixed-view cameras
deployed in Southern California. The proposed model relies on a novel deep learning architecture
using spatiotemporal information from camera imagery for real-time wildfire smoke detection, which
outperformed comparable baselines and even rivaled human performance, demonstrating the potential
for real-time wildfire smoke detection.

Resource-efficient solutions have been explored to extend the applicability of wildfire detection
systems. |de Venancio et al.| [2022] proposed an automatic fire detection system based on deep
CNNs suitable for low-power, resource-constrained devices, achieving significant reductions in
computational cost and memory consumption while maintaining performance. In the same vein,
Khan and Khan|[2022] presented "FFireNet," a deep learning-based forest fire classification method,
utilising a small neural network, the MobileNetV2 model for feature extraction and achieving
remarkable accuracy in binary classification of fire images.

Satellite imagery has been a pivotal data source for early wildfire detection. Barmpoutis et al.|[2020]]
offered an overview of optical remote sensing technologies used in early fire warning systems. They
conducted an extensive survey on flame and smoke detection algorithms employed by various systems,
including terrestrial, airborne, and spaceborne-based systems. This review contributes to future
research projects for the development of early warning fire systems. James et al.| [2023]] developed
an efficient wildfire detection system utilizing satellite imagery and optimized convolutional neural
networks (CNNs) for resource-constrained devices, using a MobileNet on an Arduino Nano 33 BLE.

Video-based fire detection techniques have emerged as a promising avenue for early wildfire detection.
Jin et al.|[2023] provided a comprehensive review of deep learning-based video fire detection methods,
summarizing recent advances in fire recognition, fire object detection, and fire segmentation using
deep learning approaches. Their review provided insights into the development prospects of video-
based wildfire detection.

de Venancio et al.| [2023]] proposed a hybrid method for fire detection based on spatial and temporal
patterns, combining CNN-based visual pattern analysis with temporal dynamics to reduce false
positives in fire detection. Additionally, Marjani and Mesgari|[2023]] introduced "FirePred," a hybrid
multi-temporal CNN model for wildfire spread prediction, emphasizing the importance of considering
varying temporal resolutions in fire prediction models.

These systems have been applied to support wildfire management decisions. Bot and Borges| [2022]]
conducted a systematic review of applications of machine learning techniques for wildfire manage-
ment decision support. Their emphasis was on summarizing applications across different case studies,
machine learning methods, case study locations, and performance metrics, highlighting the potential
of machine learning in enhancing fire management decision support.

Concerning the datasets, at first view many of them can be found in the literature with a focus on
wildfire detection. Nevertheless works such as Toulouse et al.| [2017], Sharma et al.[[2017]], [Foggia
et al.[[2015] are actually fire detection datasets, containing pictures of fires at an already advance
stage. In this work, as we mainly focus on smoke plumes in order to detect early wildfires from
watchtowers, we discard the (easier) task of fire detection. In this context, it is notable to remark that
only a very few of the datasets containing annotations for the smoke plume detection are publicly
available.

In general, there are two main sources of videos for smoke plumes detection in the wild that are
available online: HPWREN| [2023]] (High Performance Wireless Research & Education Network)
and ALERTWildfire| [2023]]. These two sources were used to create several datasets. Leveraging the
camera network of the HPWREN, [Dewangan et al., [2022} |Govil et al.| 2020, |AIforMankind, [2023|]



propose annotated datasets for early wildfire detection, while other works [Schaetzen et al., 2020,
Yazdi et al., 2022, |AlforMankind, 2023|] propose datasets obtained from the ALERTWildfire network.
Finally, from private sources and not publicly available, [Fernandes et al.| [2022]] constructed a dataset
of 35k images from Portugal that are annotated in smoke plumes. It is composed of 14,125 images
that contain smoke plumes and 21,203 that do not.

2 Datasets Collection, Fusion And Annotation

2.1 Available Datasets

In the development of an early wildfire detection model, the assembly of a comprehensive and diverse
dataset is crucial. Given the limited number of Pyronear cameras currently deployed in the field, our
effort to gather data extends to additional sources. This subsection outlines the primary sources of
data and the derivative datasets that have been instrumental in our research.

Primary Data Sources Our data acquisition strategy leverages two main sources:

» HPWREN: Funded by the National Science Foundation, HPWREN is a non-commercial,
high-performance, wide-area, wireless network of Pan-Tilt-Zoom (PTZ) cameras serving
Southern California. It focuses on network research, including the demonstration and
evaluation of its capabilities in wildfire detection.

* ALERTWildfire: A consortium of universities in the western United States provides access
to advanced PTZ fire cameras and tools, aiding firefighters and first responders in wildfire
management, covering extensive regions spanning Washington, Oregon, Idaho, California,
and Nevada. The ALERTWildfire WebsiteE] grants public access to live feeds from these
cameras.

Derived Datasets From these sources, several projects have proposed datasets that are of interest
to our wildfire detection initiative:

* SmokeFrames: Developed by [Schaetzen et al.|[2020] this dataset comprises nearly 50k
images sourced from ALERTWildfire. To tailor it to our specific requirements, we created a
subset, SmokeFrames-2.4k, consisting of 2410 images from 677 different sequences, with
an average of 3.6 images per sequence. This subset includes a significant number of false
positives, essential for a comprehensive wildfire detection model.

¢ Nemo: The dataset of |Yazdi et al.|[2022] includes frames extracted from raw videos of fires
captured by ALERTWildfire’s PTZ cameras, encompassing various stages of fire and smoke
development.

* Fuego: Initiated by the Fuego project [Govil et al.l 2020], this dataset was created by
manually selecting and annotating images from the HPWREN camera network, based on
historical fire records from Cal Fire. The authors are claiming 8500 annotated images with a
focus on the early phases of fires, but only a subset of 1661 images are publicly available.

* AiForMankind: Two training datasets emerged from hackathons organized by AI For
Mankind [AlforMankind, 2023|], a nonprofit focusing on using Al for social good. These
datasets, combined into one, offer a substantial collection of annotated images for smoke
detection and segmentation.

» FIgLib: |Dewangan et al.|[2022] propose the Fire Ignition image Library (FIgLib) which
was composed of 24,800 images from South California from 315 different fires. It is the
official dataset from the HPWREN.

2.2 Creation of the PYRONEARs(23 Dataset

This section presents the collection of the data, its annotation using a homemade platform and a
summary of the final dataset.

*https://www.alertwildfire.org/
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2.2.1 Data Acquisition Strategy

Our wildfire detection initiative utilizes the AlertWildfire camera network, which comprises approx-
imately 130 cameras. It’s crucial to note that the actual number of operational cameras fluctuates
due to occasional unavailability, the reasons for which are often unclear. Despite these variances, we
ensure comprehensive monitoring.

The core of our data collection is an automated scraping script that interacts with the AlertWildfire
API. This script retrieves images from each camera at the predetermined frequency of one image
per minute, set by AlertWildfire. While we would prefer a higher frequency—since our cameras
can capture an image every 30 seconds for analysis—this limitation necessitates that we work with
around 1,440 images per camera per day, summing up to about 187,200 images daily across the
network.

Our initial filtering stage targets the elimination of nighttime images, as our current model is designed
primarily for daylight image analysis. Nighttime images are in grayscale due to the cameras switching
to infrared mode, and these are automatically excluded from our dataset.

After filtering out the nighttime images, we perform inference on the remaining daylight images
using our model. This model analyze each image, and any with a wildfire detection score above 0.2
is marked as a potential fire event. To ensure comprehensive coverage of potential fire events, we
also save images taken 15 minutes before and after each detected event from the same camera. This
approach helps in capturing a broader timeline around each potential wildfire incident.

All the images flagged during this process, including both potential wildfire detections and corre-
sponding time-framed images, are stored for later annotation. This rich collection, encompassing
potential early signs of wildfires as well as false positives, offers a diverse dataset. This dataset is
invaluable for enhancing the performance and accuracy of our wildfire detection models, particularly
in distinguishing true wildfires from non-threatening natural occurrences.

In this way, because the fires all grow to a point where they are easily detectable, we capture all of the
events. This collection methods, which is already based on a trained model, helps to gather a diverse
range of images, from clear instances of wildfires to challenging scenarios that have historically led
to a false detection.

2.2.2 Collaborative Annotation Platform

In order to annotate the wildfire data scrapped from the web, we developed a collaborative annotation
tool with custom code in order to streamline the annotation process. We collected a total of 120,000
annotations in a few month by leveraging the help of the PyroNear community. It had to answer to
a few constraint, especially the one that as the annotators were all volunteers using their free time
to help developing an open-source dataset and model. We gave to the volunteers a precise quantity
of images, which number was selected as 150 so that the annotation task would take less than 15
minutes so that it can be done during a train commute or a break between two activities, and it kept
the cognitive load low in order to avoid mistakes and care the annotators. Finally, the platform have
also been designed to ensure a smooth and coherent workflow. A snapshot of the platform is visible
in Figure[T]

Each of the images has been annotated by five annotators in order to minimize the label errors. To val-
idate the quality of the annotationo, we calculated the inter-annotator agreement using Krippendorff’s
o Krippendorft| [2013]] with the presence or not of fire in each image, and obtained satisfying value.

2.2.3 Final Dataset: PYRONEAR3(23

The creation of the PYRONEAR»23 dataset is a carefully orchestrated process, tailored to suit our
current focus on one-image object detection. Initially, we started with an extensive collection of
120,000 labeled images. With a 5-times cross-labeling approach, this pool was refined down to
24,000 unique images.

Given our emphasis on one-image object detection, it was crucial to streamline the dataset to reduce
redundancy and enhance model performance. Our reduction process involved two critical steps:

Selective Removal of Background Images: To maintain a balanced dataset, we strategically reduced
the number of background images. This step ensured that our dataset did not disproportionately favor
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Figure 1: Snapshot of the Computer Vision Annotation Platform for Smoke Plume Detection.

non-wildfire scenarios. We aimed to keep around 15% of background images to achieve a balanced
representation. After this filtering, the dataset was condensed to roughly 10,000 images.

Subsampling to Eliminate Redundancy: Acknowledging the potential for redundancy, especially in
images sourced from video sequences, we implemented a subsampling strategy. By retaining only
one image every 10 minutes, we effectively minimized repetitive or near-identical images. This
approach was crucial in preserving the diversity of the dataset while ensuring its relevancy to our
one-image object detection focus. The dataset was thus further refined to 1,096 images, including
951 smoke images.

The final composition of the PYRONEAR3(23 dataset is:

Training Set: 987 images, including 836 smoke images. Validation Set: 109 images, with 88 smoke
images. While the current version of the PYRONEARy(23 dataset is optimized for one-image object
detection, our future plans include the utilization of the entire collection of images. We intend to
develop a temporal model that leverages a series of images for prediction, thus enhancing the accuracy
and robustness of wildfire detection.

3 Experiments and Results

In this study, our primary objective is to evaluate the quality of various datasets by conducting a
preliminary optimization process.

3.1 Methodology

We use the YOLOvS8 model [MMYOLO] [2023]], renowned for its proficiency in diverse detection
scenarios. For frugality reasons because of the type of our task, the small version of the model was
chosen for its balance between speed, size and accuracy. The optimal batch size and number of
epochs were found using a grid search in {50, 100} and {2*, k = 4...6}.

Dataset Splitting Strategy In preparing our datasets for the model training and validation process,
we were guided by the existing split in the Nemo dataset, where approximately 9.3% of the data
was allocated for validation. To maintain consistency across all datasets and ensure a comparable
evaluation framework, we adopted a similar approach for the other datasets, targeting a close
approximation of a 10% split for the validation set. This strategy enables a balanced and uniform
methodology for assessing the performance of our models across different datasets, ensuring that
each dataset is represented fairly in both training and validation phases.



Dataset Total Images  Wildfire Images Train* Validation*

AiForMankind 2935 2584 2642/2305  293/279
Fuego 1661 1572 149571421 166/ 151
Nemo 2691 2570 2440/2333  251/237
SmokeFrames-2.4k 2410 976 2169 /906 241/70

Table 1: Summary of Datasets: Total and Wildfire Images in Training and Validation Sets. In the
columns with * are shown Total/Wildfire images.

Metrics Following past works [Schaetzen et al., 2020, Yazdi et al.,[2022] [Dewangan et al., [2022]]
we use precision, recall, and the F1 score as metrics in order to validate the different models. We
chose not to use the usual object detection metric such as mean average precision (mAP) as The goal
is about correctly classifying areas in an image as indicating a wildfire or not, wihtout being able to
get the countours of the smoke plumes which can be subjective.

4 Results

4.1 Single Dataset Evaluation

Dataset Best Model Highest F1 Score Confidence Batch Size Epochs
SmokeFrames SmokeFrames3  0.920 0.15 32 50
Nemo Nemo3 0.899 0.02 64 100
AiForMankind Aiformankind2  0.883 0.03 32 50
PYRONEARg23  Wildfire3 0.793 0.04 16 100
Fuego Fuego 0.623 0.02 32 100

Table 2: Best Performing Model for Each Dataset Sorted by Highest F1 Score with Corresponding
Confidence Threshold, Batch Size, and Epochs. Best models depends on the hyperparameters.

4.2 Cross-Dataset Model Evaluation

Having trained several models on each of our diverse datasets, the next critical phase of our study
involves a rigorous cross-dataset evaluation. This process is pivotal in determining not only the
versatility and robustness of our models but also their applicability in a wide range of real-world
scenarios.

4.3 Selection of Optimal Models and Confidence Thresholds

Our approach begins with the careful selection of the best-performing model from each dataset. The
criterion for this selection is based on a F1 score, ensuring that each chosen model demonstrates the
highest level of accuracy and reliability within its training domain. Alongside this, we also identify
the optimal confidence threshold. The performances of the model trained on a combined dataset on
the different test sets are shown in Table

5 Future Enhancements: Towards PYRONEARqo,

While the cross-labeling approach used for PYRONEARg23 has significantly contributed to the
accuracy of our dataset, it has also led to a substantial reduction in the number of images we could
include. Acknowledging this limitation, we are currently developing a new methodology for the
upcoming PYRONEARypo4 dataset, which aims to semi-annotation process.

Faster Annotation We are exploring semi-automatic annotation techniques that will accelerate the
labeling process while maintaining high-quality annotations. By integrating advanced algorithms
with manual oversight, we can swiftly annotate large volumes of images without compromising on
accuracy.



Train Dataset Test Dataset Precision Recall F1 Score

AiForMankind 0.4493 0.2222 0.2974
Fuego 0.3750 0.0397  0.0719
PYRONEARyp23 Nemo 0.7386  0.7236  0.7310
SmokeFrames-2.4k 0.3056 0.9167 0.4583
PYRONEARs(23 0.7604  0.8295  0.7935
AiForMankind 0.9402 0.6201 0.7473
Fuego 0.3889 0.2781 0.3243
Nemo Nemo 0.8528 0.9496  0.8986
SmokeFrames-2.4k 0.3503 0.9718 0.5149
PYRONEARs(23 0.6364  0.6292  0.6328
AiForMankind 0.9186 0.8495  0.8827
Fuego 0.7647 0.7697  0.7672
AiForMankind Nemo 0.7812 0.3151 0.4491
SmokeFrames-2.4k 0.4356 0.6111 0.5087
PYRONEARs(23 0.7937 0.5682  0.6623
AiForMankind 0.9750 0.4194  0.5865
Fuego 0.5000 0.0066  0.0131
SmokeFrames Nemo 0.8737 0.7004  0.7775
SmokeFrames-2.4k 0.9545 0.8873 0.9197
PYRONEARsgo3 0.5217 0.1364  0.2162
AiForMankind 0.6370 0.6307  0.6338
Fuego 0.8352 0.4967  0.6230
Fuego Nemo 04719  0.1743  0.2545
SmokeFrames-2.4k 0.2833 0.2329  0.2556
PYRONEARs(23 04762  0.1136  0.1835

Table 3: Performance of the best models across different datasets

Tested Dataset Precision Recall F1 Score
AiForMankind 0.9565 0.9462 0.9514
Fuego 0.9083 0.7171 0.8015
Nemo 0.8750 0.9156 0.8948
SmokeFrames-2.4k 0.6106 0.9718 0.7500
PYRONEARg(23 0.7660  0.8182  0.7912
Combine 0.8590 0.8839 0.8713

Table 4: Performance of the ’Combine3’ Model Across Different Datasets at Confidence Threshold
0.05

Normalization of Annotations The semi-automatic approach also aims to standardize the annota-
tion process across different users. This consistency is crucial for ensuring that the dataset reflects a
uniform understanding of wildfire and smoke characteristics.

Reduced Cross-Labeling With the improved efficiency and consistency brought by semi-automatic
annotation, we anticipate the need for cross-labeling to decrease significantly. This reduction
will enable us to retain a larger portion of the images initially collected, thereby enriching the
PYRONEAR9(24 dataset with a broader range of data.

These advancements are expected to not only enhance the volume of annotated data but also to
improve the overall quality and representativeness of the PYRONEARgg24 dataset. This progression
illustrates our commitment to continuously refining our methodologies in response to the evolving
challenges of wildfire detection and monitoring.



6 Conclusion

In this paper we presented PYRONEARo(23 , @ new dataset for smoke plume detection. We collected
it by scrapping online data and an already trained model in order to get the most challengin examples.
We kept the images before and after every fire event in order to make it usable by sequential models
taking into account the temporality. The dataset was then re-annotated by a pool of volunteers using
an online platform designed for the purpose. We showed that training using our dataset helps to
improve smoke plume detection models in other public datasets. This data collection and annotation
effort will be pursued in order to extend this dataset to other domains, such as new landscape and
meteorological conditions, and it will be online soon for research and non-profit purposes.
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7 Supplementary Material

7.1 Results with the different hyperparameters

Following our comprehensive grid search and optimization process, we present the detailed results for
each dataset in Tables [5]to These tables encapsulate the outcomes of our hyperparameter tuning,
showcasing the optimal settings that yielded the highest F1 scores for each dataset. The results are
indicative of each dataset’s unique characteristics and the efficacy of the YOLOv8s model under
varying training conditions.

In addition to the tabular data, we also provide F1 score curves for each dataset, corresponding to
the tables. These curves, shown below each table, visually represent the performance of the models
across different confidence thresholds. The inclusion of F1 curves offers an intuitive understanding
of the model’s classification performance, highlighting the trade-offs between precision and recall at
various thresholds. This graphical representation complements the tabulated results, providing a more
holistic view of the model’s capabilities in detecting potential wildfire indicators within each dataset.


http://hpwren.ucsd.edu/cameras/
http://hpwren.ucsd.edu/cameras/
https://github.com/open-mmlab/mmyolo/tree/main
https://github.com/open-mmlab/mmyolo/tree/main
https://rdesc.dev/project_x_final.pdf
https://rdesc.dev/project_x_final.pdf

Model Threshold F1 Score Recall Precision Batch Size Epochs

Wildfire3  0.04 0.793 0.830  0.760 16 100
Wildfire4  0.03 0.771 0.784  0.758 16 50
Wildfire  0.08 0.764 0.682  0.870 64 50
Wildfire6  0.03 0.747 0.705  0.795 64 50
Wildfire2  0.09 0.759 0.682  0.857 32 50
Wildfire5  0.18 0.726 0.602 0914 64 100

Table 5: Optimal Thresholds and Corresponding F1 Scores, Recall, and Precision for Wildfire Models,
Sorted by F1 Score

F1 Score by Model at Various Thresholds
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Figure 2: F1 Score by Model at Various Thresholds

Model  Threshold FI1 Score Recall Precision Batch Size Epochs

Nemo3 0.02 0.899 0.950  0.853 64 100
Nemo  0.03 0.893 0.929 0.860 32 100
Nemo4 0.05 0.886 0.899  0.873 64 50
Nemo6 0.06 0.880 0.882  0.878 32 50
Nemo2 0.17 0.883 0.873  0.892 16 100
Nemo5 0.03 0.877 0912  0.845 64 50

Table 6: Optimal Thresholds and Corresponding F1 Scores, Recall, and Precision for Nemo Models,
Sorted by F1 Score
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F1 Score by Model at Various Thresholds
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Figure 3: F1 Score by Model at Various Thresholds

Model  Threshold F1 Score Recall Precision Batch Size Epochs

Fuego  0.02 0.623 0.497 0.835 32 100
Fuego4 0.01 0.502 0.856  0.355 64 50
Fuego5 0.01 0.458 0.574 0.380 16 50
Fuego3 0.02 0.459 0.331 0.746 64 100
Fuego2 0.01 0.476 0.743  0.350 32 50
Fuego6 0.04 0.337 0.270  0.451 16 100

Table 7: Optimal Thresholds and Corresponding F1 Scores, Recall, and Precision for Fuego Models,
Sorted by F1 Score

Model Threshold FI1 Score Recall Precision Batch Size Epochs
Aiformankind2  0.03 0.883 0.849 0919 32 50
Aiformankind3  0.03 0.878 0.854  0.902 16 50
Aiformankind5  0.05 0.868 0.810 0.934 32 100
Aiformankind  0.06 0.827 0.753 0917 64 50
Aiformankind6 0.01 0.835 0.864  0.809 64 100
Aiformankind4 0.03 0.843 0.875 0.813 16 100

Table 8: Optimal Thresholds and Corresponding F1 Scores, Recall, and Precision for Aiformankind
Models, Sorted by F1 Score
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Figure 4: F1 Score by Model at Various Thresholds
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Figure 5: F1 Score by Model at Various Thresholds
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Model Threshold F1 Score Recall Precision Batch Size Epochs

SmokeFrames3 0.15 0.920 0.887 0.955 32 50
SmokeFrames 0.1 0.901 0901 0.901 16 50
SmokeFrames6  0.15 0.892 0.873 0912 64 100
SmokeFrames5 0.13 0.887 0.887 0.887 32 100
SmokeFrames4 0.07 0.878 0915 0.844 64 50
SmokeFrames2 0.19 0.870 0.845 0.896 16 100

Table 9: Optimal Thresholds and Corresponding F1 Scores, Recall, and Precision for SmokeFrames
Models, Sorted by F1 Score

F1 Score by Model at Various Thresholds
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Figure 6: F1 Score by Model at Various Thresholds

Model Best Threshold F1 Score Recall Precision Batch Size Epochs
Combine3 0.05 0.871 0.884 0.859 32 100
Combine 0.05 0.867 0.877 0.857 64 100
Combine2 0.05 0.867 0.877 0.857 16 100
Combine4 0.04 0.861 0.865 0.856 16 50
Combine6 0.04 0.855 0.835 0.876 64 50
Combine5 0.11 0.851 0.807 0.901 32 50

Table 10: Performance Metrics of Combine Models Sorted by F1 Score with Corresponding Batch
Size and Epochs
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